On the Koebe Quarter Theorem for certain polynomials
نویسندگان
چکیده
Abstract We study problems similar to the Koebe Quarter Theorem for close-to-convex polynomials with all zeros of derivative in $${\mathbb {T}}:=\{z\in {\mathbb {C}}:|z|=1\}$$ T : = { z ? C | 1 } . found minimal disc containing images {D}}:=\{z\in {C}}: |z|<1\}$$ D < and maximal contained {D}}$$ through degree 3 4. Moreover we determine extremal functions both problems.
منابع مشابه
Certain Conditions for Starlikeness of Analytic Functions of Koebe Type
For α ≥ 0, λ > 0, we consider theM α, λ b of normalized analytic α−λ convex functions defined in the open unit disc U. In this paper, we investigate the classM α, λ b, that is, Re{ zf ′ b z /fb z 1− α α 1 − λ zf ′ b z /fb z αλ 1 zf ′′ b z /f ′ b z } > 0, with fb is Koebe type, that is, fb z : z/ 1−zn . The subordination result for the aforementioned class will be given. Further, bymaking use of...
متن کاملA Theorem on Difference Polynomials
We shall prove the following analogue of a theorem of Kronecker's : Let J be a difference field containing an element t which is distinct from its transforms of any order. Every perfect ideal in the ring 7\yu ' ' ' y y<n\ has a basis consisting of n + 1 difference polynomials. The corresponding theorem for differential polynomials was proved by J. F. Ritt. We shall follow in all but details a b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2021
ISSN: ['1664-2368', '1664-235X']
DOI: https://doi.org/10.1007/s13324-021-00501-8